Problem A. 1

Consider the ordinary vectors in three dimensions $\left(a_{x} \hat{i}+a_{y} \hat{j}+a_{z} \hat{k}\right)$, with complex components.
(a) Does the subset of all vectors with $a_{z}=0$ constitute a vector space? If so, what is its dimension; if not, why not?
(b) What about the subset of all vectors whose z component is 1? Hint: Would the sum of two such vectors be in the subset? How about the null vector?
(c) What about the subset of vectors whose components are all equal?

Solution

In order for a collection of vectors \mathcal{V} to be a vector space over the complex numbers \mathbb{C}, the vector addition and scalar multiplication operations defined on it must satisfy the following ten properties.
(A1) $\mathbf{x}+\mathbf{y} \in \mathcal{V}$ for all $\mathbf{x}, \mathbf{y} \in \mathcal{V}$.
(A2) $(\mathbf{x}+\mathbf{y})+\mathbf{z}=\mathbf{x}+(\mathbf{y}+\mathbf{z})$ for every $\mathbf{x}, \mathbf{y}, \mathbf{z} \in \mathcal{V}$.
(A3) $\mathbf{x}+\mathbf{y}=\mathbf{y}+\mathbf{x}$ for every $\mathbf{x}, \mathbf{y} \in \mathcal{V}$.
(A4) There is an element $\mathbf{0} \in \mathcal{V}$ such that $\mathbf{x}+\mathbf{0}=\mathbf{x}$ for every $\mathbf{x} \in \mathcal{V}$.
(A5) For each $\mathbf{x} \in \mathcal{V}$, there is an element $(-\mathbf{x}) \in \mathcal{V}$ such that $\mathbf{x}+(-\mathbf{x})=\mathbf{0}$.
(M1) $\alpha \mathbf{x} \in \mathcal{V}$ for all $\alpha \in \mathbb{C}$ and $\mathbf{x} \in \mathcal{V}$.
(M2) $(\alpha \beta) \mathbf{x}=\alpha(\beta \mathbf{x})$ for all $\alpha, \beta \in \mathbb{C}$ and every $\mathbf{x} \in \mathcal{V}$.
(M3) $\alpha(\mathbf{x}+\mathbf{y})=\alpha \mathbf{x}+\alpha \mathbf{y}$ for every $\alpha \in \mathbb{C}$ and all $\mathbf{x}, \mathbf{y} \in \mathcal{V}$.
(M4) $(\alpha+\beta) \mathbf{x}=\alpha \mathbf{x}+\beta \mathbf{x}$ for all $\alpha, \beta \in \mathbb{C}$ and every $\mathbf{x} \in \mathcal{V}$.
(M5) $1 \mathrm{x}=\mathrm{x}$ for every $\mathrm{x} \in \mathcal{V}$.

Part (a)

Here \mathcal{V} consists of all the vectors with three components that have a zero third component. Let \mathbf{x}, \mathbf{y}, and \mathbf{z} be vectors in \mathcal{V} and let α and β be complex scalars.

$$
\begin{aligned}
& \mathbf{x}=x_{1} \hat{\mathbf{x}}+y_{1} \hat{\mathbf{y}}+0 \hat{\mathbf{z}} \\
& \mathbf{y}=x_{2} \hat{\mathbf{x}}+y_{2} \hat{\mathbf{y}}+0 \hat{\mathbf{z}} \\
& \mathbf{z}=x_{3} \hat{\mathbf{x}}+y_{3} \hat{\mathbf{y}}+0 \hat{\mathbf{z}}
\end{aligned}
$$

Property A1
Take the sum of \mathbf{x} and \mathbf{y}.

$$
\mathbf{x}+\mathbf{y}=\left(x_{1} \hat{\mathbf{x}}+y_{1} \hat{\mathbf{y}}+0 \hat{\mathbf{z}}\right)+\left(x_{2} \hat{\mathbf{x}}+y_{2} \hat{\mathbf{y}}+0 \hat{\mathbf{z}}\right)=\left(x_{1}+x_{2}\right) \hat{\mathbf{x}}+\left(y_{1}+y_{2}\right) \hat{\mathbf{y}}+0 \hat{\mathbf{z}}
$$

Because the z-component of $\mathbf{x}+\mathbf{y}$ is also zero, $\mathbf{x}+\mathbf{y}$ is a vector in \mathcal{V}. Property A1 is satisfied.

Property A2

Compare the vector sums of $(\mathbf{x}+\mathbf{y})+\mathbf{z}$ and $\mathbf{x}+(\mathbf{y}+\mathbf{z})$.

$$
\begin{aligned}
(\mathbf{x}+\mathbf{y})+\mathbf{z} & =\left[\left(x_{1} \hat{\mathbf{x}}+y_{1} \hat{\mathbf{y}}+0 \hat{\mathbf{z}}\right)+\left(x_{2} \hat{\mathbf{x}}+y_{2} \hat{\mathbf{y}}+0 \hat{\mathbf{z}}\right)\right]+\left(x_{3} \hat{\mathbf{x}}+y_{3} \hat{\mathbf{y}}+0 \hat{\mathbf{z}}\right) \\
& =\left[\left(x_{1}+x_{2}\right) \hat{\mathbf{x}}+\left(y_{1}+y_{2}\right) \hat{\mathbf{y}}+0 \hat{\mathbf{z}}\right]+\left(x_{3} \hat{\mathbf{x}}+y_{3} \hat{\mathbf{y}}+0 \hat{\mathbf{z}}\right) \\
& =\left[\left(x_{1}+x_{2}\right)+x_{3}\right] \hat{\mathbf{x}}+\left[\left(y_{1}+y_{2}\right)+y_{3}\right] \hat{\mathbf{y}}+0 \hat{\mathbf{z}} \\
& =\left(x_{1}+x_{2}+x_{3}\right) \hat{\mathbf{x}}+\left(y_{1}+y_{2}+y_{3}\right) \hat{\mathbf{y}}+0 \hat{\mathbf{z}} \\
\mathbf{x}+(\mathbf{y}+\mathbf{z}) & =\left(x_{1} \hat{\mathbf{x}}+y_{1} \hat{\mathbf{y}}+0 \hat{\mathbf{z}}\right)+\left[\left(x_{2} \hat{\mathbf{x}}+y_{2} \hat{\mathbf{y}}+0 \hat{\mathbf{z}}\right)+\left(x_{3} \hat{\mathbf{x}}+y_{3} \hat{\mathbf{y}}+0 \hat{\mathbf{z}}\right)\right] \\
& =\left(x_{1} \hat{\mathbf{x}}+y_{1} \hat{\mathbf{y}}+0 \hat{\mathbf{z}}\right)+\left[\left(x_{2}+x_{3}\right) \hat{\mathbf{x}}+\left(y_{2}+y_{3}\right) \hat{\mathbf{y}}+0 \hat{\mathbf{z}}\right] \\
& =\left[x_{1}+\left(x_{2}+x_{3}\right)\right] \hat{\mathbf{x}}+\left[y_{1}+\left(y_{2}+y_{3}\right)\right] \hat{\mathbf{y}}+0 \hat{\mathbf{z}} \\
& =\left(x_{1}+x_{2}+x_{3}\right) \hat{\mathbf{x}}+\left(y_{1}+y_{2}+y_{3}\right) \hat{\mathbf{y}}+0 \hat{\mathbf{z}}
\end{aligned}
$$

Because of the associative property of addition, $(\mathbf{x}+\mathbf{y})+\mathbf{z}=\mathbf{x}+(\mathbf{y}+\mathbf{z})$. Property A2 is satisfied.

Property A3

Compare the vector sums of $\mathbf{x}+\mathbf{y}$ and $\mathbf{y}+\mathbf{x}$.

$$
\begin{aligned}
\mathbf{x}+\mathbf{y} & =\left(x_{1} \hat{\mathbf{x}}+y_{1} \hat{\mathbf{y}}+0 \hat{\mathbf{z}}\right)+\left(x_{2} \hat{\mathbf{x}}+y_{2} \hat{\mathbf{y}}+0 \hat{\mathbf{z}}\right) \\
& =\left(x_{1}+x_{2}\right) \hat{\mathbf{x}}+\left(y_{1}+y_{2}\right) \hat{\mathbf{y}}+0 \hat{\mathbf{z}} \\
\mathbf{y}+\mathbf{x} & =\left(x_{2} \hat{\mathbf{x}}+y_{2} \hat{\mathbf{y}}+0 \hat{\mathbf{z}}\right)+\left(x_{1} \hat{\mathbf{x}}+y_{1} \hat{\mathbf{y}}+0 \hat{\mathbf{z}}\right) \\
& =\left(x_{2}+x_{1}\right) \hat{\mathbf{x}}+\left(y_{2}+y_{1}\right) \hat{\mathbf{y}}+0 \hat{\mathbf{z}} \\
& =\left(x_{1}+x_{2}\right) \hat{\mathbf{x}}+\left(y_{1}+y_{2}\right) \hat{\mathbf{y}}+0 \hat{\mathbf{z}}
\end{aligned}
$$

Because of the commutative property of addition, $\mathbf{x}+\mathbf{y}=\mathbf{y}+\mathbf{x}$. Property A3 is satisfied.

Property A4

The zero element is the vector in \mathcal{V} with zero x - and y-components.

$$
\mathbf{0}=0 \hat{\mathbf{x}}+0 \hat{\mathbf{y}}+0 \hat{\mathbf{z}}
$$

Adding this to \mathbf{x} results in \mathbf{x}.

$$
\begin{aligned}
\mathbf{x}+\mathbf{0} & =\left(x_{1} \hat{\mathbf{x}}+y_{1} \hat{\mathbf{y}}+0 \hat{\mathbf{z}}\right)+(0 \hat{\mathbf{x}}+0 \hat{\mathbf{y}}+0 \hat{\mathbf{z}}) \\
& =\left(x_{1}+0\right) \hat{\mathbf{x}}+\left(y_{1}+0\right) \hat{\mathbf{y}}+(0+0) \hat{\mathbf{z}} \\
& =x_{1} \hat{\mathbf{x}}+y_{1} \hat{\mathbf{y}}+0 \hat{\mathbf{z}} \\
& =\mathbf{x}
\end{aligned}
$$

Property A4 is satisfied.

Property A5

The additive inverse of \mathbf{x} is $-\mathbf{x}=-\left(x_{1} \hat{\mathbf{x}}+y_{1} \hat{\mathbf{y}}+0 \hat{\mathbf{z}}\right)=-x_{1} \hat{\mathbf{x}}-y_{1} \hat{\mathbf{y}}+0 \hat{\mathbf{z}}$. Because the z-component of -x is zero, -x is also in \mathcal{V}.

$$
\begin{aligned}
\mathbf{x}+(-\mathbf{x}) & =\left(x_{1} \hat{\mathbf{x}}+y_{1} \hat{\mathbf{y}}+0 \hat{\mathbf{z}}\right)+\left(-x_{1} \hat{\mathbf{x}}-y_{1} \hat{\mathbf{y}}+0 \hat{\mathbf{z}}\right) \\
& =\left[x_{1}+\left(-x_{1}\right)\right] \hat{\mathbf{x}}+\left[y_{1}+\left(-y_{1}\right)\right] \hat{\mathbf{y}}+0 \hat{\mathbf{z}} \\
& =0 \hat{\mathbf{x}}+0 \hat{\mathbf{y}}+0 \hat{\mathbf{z}} \\
& =\mathbf{0}
\end{aligned}
$$

Property A5 is satisfied.
Property M1
Multiply α and \mathbf{x}.

$$
\begin{aligned}
\alpha \mathbf{x} & =\alpha\left(x_{1} \hat{\mathbf{x}}+y_{1} \hat{\mathbf{y}}+0 \hat{\mathbf{z}}\right) \\
& =\alpha x_{1} \hat{\mathbf{x}}+\alpha y_{1} \hat{\mathbf{y}}+0 \hat{\mathbf{z}}
\end{aligned}
$$

Because the z-component of $\alpha \mathbf{x}$ is zero, $\alpha \mathbf{x}$ is in \mathcal{V}. Property M1 is satisfied.
Property M2
Compare the formulas of $(\alpha \beta) \mathbf{x}$ and $\alpha(\beta \mathbf{x})$.

$$
\begin{aligned}
(\alpha \beta) \mathbf{x} & =(\alpha \beta)\left(x_{1} \hat{\mathbf{x}}+y_{1} \hat{\mathbf{y}}+0 \hat{\mathbf{z}}\right) \\
& =\left[(\alpha \beta) x_{1}\right] \hat{\mathbf{x}}+\left[(\alpha \beta) y_{1}\right] \hat{\mathbf{y}}+0 \hat{\mathbf{z}} \\
& =\alpha \beta x_{1} \hat{\mathbf{x}}+\alpha \beta y_{1} \hat{\mathbf{y}}+0 \hat{\mathbf{z}} \\
\alpha(\beta \mathbf{x}) & =\alpha\left[\beta\left(x_{1} \hat{\mathbf{x}}+y_{1} \hat{\mathbf{y}}+0 \hat{\mathbf{z}}\right)\right] \\
& =\alpha\left(\beta x_{1} \hat{\mathbf{x}}+\beta y_{1} \hat{\mathbf{y}}+0 \hat{\mathbf{z}}\right) \\
& =\left[\alpha\left(\beta x_{1}\right)\right] \hat{\mathbf{x}}+\left[\alpha\left(\beta y_{1}\right)\right] \hat{\mathbf{y}}+0 \hat{\mathbf{z}} \\
& =\alpha \beta x_{1} \hat{\mathbf{x}}+\alpha \beta y_{1} \hat{\mathbf{y}}+0 \hat{\mathbf{z}}
\end{aligned}
$$

Because of the associative property of multiplication, $(\alpha \beta) \mathbf{x}=\alpha(\beta \mathbf{x})$. Property M2 is satisfied.

Property M3

Compare the formulas of $\alpha(\mathbf{x}+\mathbf{y})$ and $\alpha \mathbf{x}+\alpha \mathbf{y}$.

$$
\begin{aligned}
\alpha(\mathbf{x}+\mathbf{y}) & =\alpha\left[\left(x_{1} \hat{\mathbf{x}}+y_{1} \hat{\mathbf{y}}+0 \hat{\mathbf{z}}\right)+\left(x_{2} \hat{\mathbf{x}}+y_{2} \hat{\mathbf{y}}+0 \hat{\mathbf{z}}\right)\right] \\
& =\alpha\left[\left(x_{1}+x_{2}\right) \hat{\mathbf{x}}+\left(y_{1}+y_{2}\right) \hat{\mathbf{y}}+0 \hat{\mathbf{z}}\right] \\
& =\alpha\left(x_{1}+x_{2}\right) \hat{\mathbf{x}}+\alpha\left(y_{1}+y_{2}\right) \hat{\mathbf{y}}+0 \hat{\mathbf{z}}
\end{aligned}
$$

Evaluate the formula for $\alpha \mathbf{x}+\alpha \mathbf{y}$.

$$
\begin{aligned}
\alpha \mathbf{x}+\alpha \mathbf{y} & =\alpha\left(x_{1} \hat{\mathbf{x}}+y_{1} \hat{\mathbf{y}}+0 \hat{\mathbf{z}}\right)+\alpha\left(x_{2} \hat{\mathbf{x}}+y_{2} \hat{\mathbf{y}}+0 \hat{\mathbf{z}}\right) \\
& =\left(\alpha x_{1} \hat{\mathbf{x}}+\alpha y_{1} \hat{\mathbf{y}}+0 \hat{\mathbf{z}}\right)+\left(\alpha x_{2} \hat{\mathbf{x}}+\alpha y_{2} \hat{\mathbf{y}}+0 \hat{\mathbf{z}}\right) \\
& =\left(\alpha x_{1}+\alpha x_{2}\right) \hat{\mathbf{x}}+\left(\alpha y_{1}+\alpha y_{2}\right) \hat{\mathbf{y}}+0 \hat{\mathbf{z}}
\end{aligned}
$$

Because of the distributive property, $\alpha(\mathbf{x}+\mathbf{y})=\alpha \mathbf{x}+\alpha \mathbf{y}$. Property M3 is satisfied.
Property M4
Compare the formulas of $(\alpha+\beta) \mathbf{x}$ and $\alpha \mathbf{x}+\beta \mathbf{x}$.

$$
\begin{aligned}
(\alpha+\beta) \mathbf{x} & =(\alpha+\beta)\left(x_{1} \hat{\mathbf{x}}+y_{1} \hat{\mathbf{y}}+0 \hat{\mathbf{z}}\right) \\
& =\left[(\alpha+\beta) x_{1}\right] \hat{\mathbf{x}}+\left[(\alpha+\beta) y_{1}\right] \hat{\mathbf{y}}+0 \hat{\mathbf{z}} \\
& =\left(\alpha x_{1}+\beta x_{1}\right) \hat{\mathbf{x}}+\left(\alpha y_{1}+\beta y_{1}\right) \hat{\mathbf{y}}+0 \hat{\mathbf{z}} \\
\alpha \mathbf{x}+\beta \mathbf{x} & =\alpha\left(x_{1} \hat{\mathbf{x}}+y_{1} \hat{\mathbf{y}}+0 \hat{\mathbf{z}}\right)+\beta\left(x_{1} \hat{\mathbf{x}}+y_{1} \hat{\mathbf{y}}+0 \hat{\mathbf{z}}\right) \\
& =\left(\alpha x_{1} \hat{\mathbf{x}}+\alpha y_{1} \hat{\mathbf{y}}+0 \hat{\mathbf{z}}\right)+\left(\beta x_{1} \hat{\mathbf{x}}+\beta y_{1} \hat{\mathbf{y}}+0 \hat{\mathbf{z}}\right) \\
& =\left(\alpha x_{1}+\beta x_{1}\right) \hat{\mathbf{x}}+\left(\alpha y_{1}+\beta y_{1}\right) \hat{\mathbf{y}}+0 \hat{\mathbf{z}}
\end{aligned}
$$

Because of the distributive property, $(\alpha+\beta) \mathbf{x}=\alpha \mathbf{x}+\beta \mathbf{x}$. Property M4 is satisfied.
Property M5
Multiply 1 and \mathbf{x}.

$$
\begin{aligned}
1 \mathbf{x} & =1\left(x_{1} \hat{\mathbf{x}}+y_{1} \hat{\mathbf{y}}+0 \hat{\mathbf{z}}\right) \\
& =x_{1} \hat{\mathbf{x}}+y_{1} \hat{\mathbf{y}}+0 \hat{\mathbf{z}} \\
& =\mathbf{x}
\end{aligned}
$$

Property M5 is satisfied. All ten properties are satisfied, so the set of vectors with three components, the third being zero, is a vector space over the complex numbers. The dimension of the vector space is 2 because each of the vectors is spanned by the two basis vectors, $\hat{\mathbf{x}}=(1,0,0)$ and $\hat{\mathbf{y}}=(0,1,0)$.

Part (b)

Here \mathcal{V} consists of all the vectors with three components that have a third component of 1 . Let \mathbf{x}, \mathbf{y}, and \mathbf{z} be vectors in \mathcal{V} and let α and β be complex scalars.

$$
\begin{aligned}
\mathbf{x} & =x_{1} \hat{\mathbf{x}}+y_{1} \hat{\mathbf{y}}+1 \hat{\mathbf{z}} \\
\mathbf{y} & =x_{2} \hat{\mathbf{x}}+y_{2} \hat{\mathbf{y}}+1 \hat{\mathbf{z}} \\
\mathbf{z} & =x_{3} \hat{\mathbf{x}}+y_{3} \hat{\mathbf{y}}+1 \hat{\mathbf{z}}
\end{aligned}
$$

Property A1

Take the sum of \mathbf{x} and \mathbf{y}.

$$
\mathbf{x}+\mathbf{y}=\left(x_{1} \hat{\mathbf{x}}+y_{1} \hat{\mathbf{y}}+1 \hat{\mathbf{z}}\right)+\left(x_{2} \hat{\mathbf{x}}+y_{2} \hat{\mathbf{y}}+1 \hat{\mathbf{z}}\right)=\left(x_{1}+x_{2}\right) \hat{\mathbf{x}}+\left(y_{1}+y_{2}\right) \hat{\mathbf{y}}+2 \hat{\mathbf{z}}
$$

Because the z-component of $\mathbf{x}+\mathbf{y}$ is not also $1, \mathbf{x}+\mathbf{y}$ is not a vector in \mathcal{V}. Property A 1 is not satisfied, so \mathcal{V} is not a vector space over the complex numbers. Property A4 is also not satisfied because no choice of the first two components gives the zero element $\mathbf{0}=0 \hat{\mathbf{x}}+0 \hat{\mathbf{y}}+0 \hat{\mathbf{z}}$.

Part (c)

Here \mathcal{V} consists of all the vectors with three equal components. Let \mathbf{x}, \mathbf{y}, and \mathbf{z} be vectors in \mathcal{V} and let α and β be complex scalars.

$$
\begin{aligned}
& \mathbf{x}=a_{1} \hat{\mathbf{x}}+a_{1} \hat{\mathbf{y}}+a_{1} \hat{\mathbf{z}} \\
& \mathbf{y}=a_{2} \hat{\mathbf{x}}+a_{2} \hat{\mathbf{y}}+a_{2} \hat{\mathbf{z}} \\
& \mathbf{z}=a_{3} \hat{\mathbf{x}}+a_{3} \hat{\mathbf{y}}+a_{3} \hat{\mathbf{z}}
\end{aligned}
$$

Property A1

Take the sum of \mathbf{x} and \mathbf{y}.

$$
\mathbf{x}+\mathbf{y}=\left(a_{1} \hat{\mathbf{x}}+a_{1} \hat{\mathbf{y}}+a_{1} \hat{\mathbf{z}}\right)+\left(a_{2} \hat{\mathbf{x}}+a_{2} \hat{\mathbf{y}}+a_{2} \hat{\mathbf{z}}\right)=\left(a_{1}+a_{2}\right) \hat{\mathbf{x}}+\left(a_{1}+a_{2}\right) \hat{\mathbf{y}}+\left(a_{1}+a_{2}\right) \hat{\mathbf{z}}
$$

Because the components of $\mathbf{x}+\mathbf{y}$ are all equal, $\mathbf{x}+\mathbf{y}$ is a vector in \mathcal{V}. Property A1 is satisfied.
Property A2
Compare the vector sums of $(\mathbf{x}+\mathbf{y})+\mathbf{z}$ and $\mathbf{x}+(\mathbf{y}+\mathbf{z})$.

$$
\begin{aligned}
(\mathbf{x}+\mathbf{y})+\mathbf{z} & =\left[\left(a_{1} \hat{\mathbf{x}}+a_{1} \hat{\mathbf{y}}+a_{1} \hat{\mathbf{z}}\right)+\left(a_{2} \hat{\mathbf{x}}+a_{2} \hat{\mathbf{y}}+a_{2} \hat{\mathbf{z}}\right)\right]+\left(a_{3} \hat{\mathbf{x}}+a_{3} \hat{\mathbf{y}}+a_{3} \hat{\mathbf{z}}\right) \\
& =\left[\left(a_{1}+a_{2}\right) \hat{\mathbf{x}}+\left(a_{1}+a_{2}\right) \hat{\mathbf{y}}+\left(a_{1}+a_{2}\right) \hat{\mathbf{z}}\right]+\left(a_{3} \hat{\mathbf{x}}+a_{3} \hat{\mathbf{y}}+a_{3} \hat{\mathbf{z}}\right) \\
& =\left[\left(a_{1}+a_{2}\right)+a_{3}\right] \hat{\mathbf{x}}+\left[\left(a_{1}+a_{2}\right)+a_{3}\right] \hat{\mathbf{y}}+\left[\left(a_{1}+a_{2}\right)+a_{3}\right] \hat{\mathbf{z}} \\
& =\left(a_{1}+a_{2}+a_{3}\right) \hat{\mathbf{x}}+\left(a_{1}+a_{2}+a_{3}\right) \hat{\mathbf{y}}+\left(a_{1}+a_{2}+a_{3}\right) \hat{\mathbf{z}} \\
\mathbf{x}+(\mathbf{y}+\mathbf{z}) & =\left(a_{1} \hat{\mathbf{x}}+a_{1} \hat{\mathbf{y}}+a_{1} \hat{\mathbf{z}}\right)+\left[\left(a_{2} \hat{\mathbf{x}}+a_{2} \hat{\mathbf{y}}+a_{2} \hat{\mathbf{z}}\right)+\left(a_{3} \hat{\mathbf{x}}+a_{3} \hat{\mathbf{y}}+a_{3} \hat{\mathbf{z}}\right)\right] \\
& =\left(a_{1} \hat{\mathbf{x}}+a_{1} \hat{\mathbf{y}}+a_{1} \hat{\mathbf{z}}\right)+\left[\left(a_{2}+a_{3}\right) \hat{\mathbf{x}}+\left(a_{2}+a_{3}\right) \hat{\mathbf{y}}+\left(a_{2}+a_{3}\right) \hat{\mathbf{z}}\right] \\
& =\left[a_{1}+\left(a_{2}+a_{3}\right)\right] \hat{\mathbf{x}}+\left[a_{1}+\left(a_{2}+a_{3}\right)\right] \hat{\mathbf{y}}+\left[a_{1}+\left(a_{2}+a_{3}\right)\right] \hat{\mathbf{z}} \\
& =\left(a_{1}+a_{2}+a_{3}\right) \hat{\mathbf{x}}+\left(a_{1}+a_{2}+a_{3}\right) \hat{\mathbf{y}}+\left(a_{1}+a_{2}+a_{3}\right) \hat{\mathbf{z}}
\end{aligned}
$$

Because of the associative property of addition, $(\mathbf{x}+\mathbf{y})+\mathbf{z}=\mathbf{x}+(\mathbf{y}+\mathbf{z})$. Property A2 is satisfied.

Property A3

Compare the vector sums of $\mathbf{x}+\mathbf{y}$ and $\mathbf{y}+\mathbf{x}$.

$$
\begin{aligned}
\mathbf{x}+\mathbf{y} & =\left(a_{1} \hat{\mathbf{x}}+a_{1} \hat{\mathbf{y}}+a_{1} \hat{\mathbf{z}}\right)+\left(a_{2} \hat{\mathbf{x}}+a_{2} \hat{\mathbf{y}}+a_{2} \hat{\mathbf{z}}\right) \\
& =\left(a_{1}+a_{2}\right) \hat{\mathbf{x}}+\left(a_{1}+a_{2}\right) \hat{\mathbf{y}}+\left(a_{1}+a_{2}\right) \hat{\mathbf{z}} \\
\mathbf{y}+\mathbf{x} & =\left(a_{2} \hat{\mathbf{x}}+a_{2} \hat{\mathbf{y}}+a_{2} \hat{\mathbf{z}}\right)+\left(a_{1} \hat{\mathbf{x}}+a_{1} \hat{\mathbf{y}}+a_{1} \hat{\mathbf{z}}\right) \\
& =\left(a_{2}+a_{1}\right) \hat{\mathbf{x}}+\left(a_{2}+a_{1}\right) \hat{\mathbf{y}}+\left(a_{2}+a_{1}\right) \hat{\mathbf{z}} \\
& =\left(a_{1}+a_{2}\right) \hat{\mathbf{x}}+\left(a_{1}+a_{2}\right) \hat{\mathbf{y}}+\left(a_{1}+a_{2}\right) \hat{\mathbf{z}}
\end{aligned}
$$

Because of the commutative property of addition, $\mathbf{x}+\mathbf{y}=\mathbf{y}+\mathbf{x}$. Property A3 is satisfied.

Property A4

The zero element is the vector in \mathcal{V} that has all components equal to zero.

$$
\mathbf{0}=0 \hat{\mathbf{x}}+0 \hat{\mathbf{y}}+0 \hat{\mathbf{z}}
$$

Adding this to \mathbf{x} results in \mathbf{x}.

$$
\begin{aligned}
\mathbf{x}+\mathbf{0} & =\left(a_{1} \hat{\mathbf{x}}+a_{1} \hat{\mathbf{y}}+a_{1} \hat{\mathbf{z}}\right)+(0 \hat{\mathbf{x}}+0 \hat{\mathbf{y}}+0 \hat{\mathbf{z}}) \\
& =\left(a_{1}+0\right) \hat{\mathbf{x}}+\left(a_{1}+0\right) \hat{\mathbf{y}}+\left(a_{1}+0\right) \hat{\mathbf{z}} \\
& =a_{1} \hat{\mathbf{x}}+a_{1} \hat{\mathbf{y}}+a_{1} \hat{\mathbf{z}} \\
& =\mathbf{x}
\end{aligned}
$$

Property A4 is satisfied.

Property A5

The additive inverse of \mathbf{x} is $-\mathbf{x}=-\left(a_{1} \hat{\mathbf{x}}+a_{1} \hat{\mathbf{y}}+a_{1} \hat{\mathbf{z}}\right)=-a_{1} \hat{\mathbf{x}}-a_{1} \hat{\mathbf{y}}-a_{1} \hat{\mathbf{z}}$. Because the components of -x are equal, -x is also in \mathcal{V}.

$$
\begin{aligned}
\mathbf{x}+(-\mathbf{x}) & =\left(a_{1} \hat{\mathbf{x}}+a_{1} \hat{\mathbf{y}}+a_{1} \hat{\mathbf{z}}\right)+\left(-a_{1} \hat{\mathbf{x}}-a_{1} \hat{\mathbf{y}}-a_{1} \hat{\mathbf{z}}\right) \\
& =\left[a_{1}+\left(-a_{1}\right)\right] \hat{\mathbf{x}}+\left[a_{1}+\left(-a_{1}\right)\right] \hat{\mathbf{y}}+\left[a_{1}+\left(-a_{1}\right)\right] \hat{\mathbf{z}} \\
& =0 \hat{\mathbf{x}}+0 \hat{\mathbf{y}}+0 \hat{\mathbf{z}} \\
& =\mathbf{0}
\end{aligned}
$$

Property A5 is satisfied.

Property M1

Multiply α and \mathbf{x}.

$$
\begin{aligned}
\alpha \mathbf{x} & =\alpha\left(a_{1} \hat{\mathbf{x}}+a_{1} \hat{\mathbf{y}}+a_{1} \hat{\mathbf{z}}\right) \\
& =\alpha a_{1} \hat{\mathbf{x}}+\alpha a_{1} \hat{\mathbf{y}}+\alpha a_{1} \hat{\mathbf{z}}
\end{aligned}
$$

Because the components of $\alpha \mathbf{x}$ are all equal, $\alpha \mathbf{x}$ is in \mathcal{V}. Property M1 is satisfied.

Property M2

Compare the formulas of $(\alpha \beta) \mathbf{x}$ and $\alpha(\beta \mathbf{x})$.

$$
\begin{aligned}
(\alpha \beta) \mathbf{x} & =(\alpha \beta)\left(a_{1} \hat{\mathbf{x}}+a_{1} \hat{\mathbf{y}}+a_{1} \hat{\mathbf{z}}\right) \\
& =\left[(\alpha \beta) a_{1}\right] \hat{\mathbf{x}}+\left[(\alpha \beta) a_{1}\right] \hat{\mathbf{y}}+\left[(\alpha \beta) a_{1}\right] \hat{\mathbf{z}} \\
& =\alpha \beta a_{1} \hat{\mathbf{x}}+\alpha \beta a_{1} \hat{\mathbf{y}}+\alpha \beta a_{1} \hat{\mathbf{z}} \\
\alpha(\beta \mathbf{x}) & =\alpha\left[\beta\left(a_{1} \hat{\mathbf{x}}+a_{1} \hat{\mathbf{y}}+a_{1} \hat{\mathbf{z}}\right)\right] \\
& =\alpha\left(\beta a_{1} \hat{\mathbf{x}}+\beta a_{1} \hat{\mathbf{y}}+\beta a_{1} \hat{\mathbf{z}}\right) \\
& =\left[\alpha\left(\beta a_{1}\right)\right] \hat{\mathbf{x}}+\left[\alpha\left(\beta a_{1}\right)\right] \hat{\mathbf{y}}+\left[\alpha\left(\beta a_{1}\right)\right] \hat{\mathbf{z}} \\
& =\alpha \beta a_{1} \hat{\mathbf{x}}+\alpha \beta a_{1} \hat{\mathbf{y}}+\alpha \beta a_{1} \hat{\mathbf{z}}
\end{aligned}
$$

Because of the associative property of multiplication, $(\alpha \beta) \mathbf{x}=\alpha(\beta \mathbf{x})$. Property M2 is satisfied.

Property M3

Compare the formulas of $\alpha(\mathbf{x}+\mathbf{y})$ and $\alpha \mathbf{x}+\alpha \mathbf{y}$.

$$
\begin{aligned}
\alpha(\mathbf{x}+\mathbf{y}) & =\alpha\left[\left(a_{1} \hat{\mathbf{x}}+a_{1} \hat{\mathbf{y}}+a_{1} \hat{\mathbf{z}}\right)+\left(a_{2} \hat{\mathbf{x}}+a_{2} \hat{\mathbf{y}}+a_{2} \hat{\mathbf{z}}\right)\right] \\
& =\alpha\left[\left(a_{1}+a_{2}\right) \hat{\mathbf{x}}+\left(a_{1}+a_{2}\right) \hat{\mathbf{y}}+\left(a_{1}+a_{2}\right) \hat{\mathbf{z}}\right] \\
& =\alpha\left(a_{1}+a_{2}\right) \hat{\mathbf{x}}+\alpha\left(a_{1}+a_{2}\right) \hat{\mathbf{y}}+\alpha\left(a_{1}+a_{2}\right) \hat{\mathbf{z}}
\end{aligned}
$$

Evaluate the formula for $\alpha \mathbf{x}+\alpha \mathbf{y}$.

$$
\begin{aligned}
\alpha \mathbf{x}+\alpha \mathbf{y} & =\alpha\left(a_{1} \hat{\mathbf{x}}+a_{1} \hat{\mathbf{y}}+a_{1} \hat{\mathbf{z}}\right)+\alpha\left(a_{2} \hat{\mathbf{x}}+a_{2} \hat{\mathbf{y}}+a_{2} \hat{\mathbf{z}}\right) \\
& =\left(\alpha a_{1} \hat{\mathbf{x}}+\alpha a_{1} \hat{\mathbf{y}}+\alpha a_{1} \hat{\mathbf{z}}\right)+\left(\alpha a_{2} \hat{\mathbf{x}}+\alpha a_{2} \hat{\mathbf{y}}+\alpha a_{2} \hat{\mathbf{z}}\right) \\
& =\left(\alpha a_{1}+\alpha a_{2}\right) \hat{\mathbf{x}}+\left(\alpha a_{1}+\alpha a_{2}\right) \hat{\mathbf{y}}+\left(\alpha a_{1}+\alpha a_{2}\right) \hat{\mathbf{z}}
\end{aligned}
$$

Because of the distributive property, $\alpha(\mathbf{x}+\mathbf{y})=\alpha \mathbf{x}+\alpha \mathbf{y}$. Property M3 is satisfied.

Property M4

Compare the formulas of $(\alpha+\beta) \mathbf{x}$ and $\alpha \mathbf{x}+\beta \mathbf{x}$.

$$
\begin{aligned}
(\alpha+\beta) \mathbf{x} & =(\alpha+\beta)\left(a_{1} \hat{\mathbf{x}}+a_{1} \hat{\mathbf{y}}+a_{1} \hat{\mathbf{z}}\right) \\
& =\left[(\alpha+\beta) a_{1}\right] \hat{\mathbf{x}}+\left[(\alpha+\beta) a_{1}\right] \hat{\mathbf{y}}+\left[(\alpha+\beta) a_{1}\right] \hat{\mathbf{z}} \\
& =\left(\alpha a_{1}+\beta a_{1}\right) \hat{\mathbf{x}}+\left(\alpha a_{1}+\beta a_{1}\right) \hat{\mathbf{y}}+\left(\alpha a_{1}+\beta a_{1}\right) \hat{\mathbf{z}} \\
\alpha \mathbf{x}+\beta \mathbf{x} & =\alpha\left(a_{1} \hat{\mathbf{x}}+a_{1} \hat{\mathbf{y}}+a_{1} \hat{\mathbf{z}}\right)+\beta\left(a_{1} \hat{\mathbf{x}}+a_{1} \hat{\mathbf{y}}+a_{1} \hat{\mathbf{z}}\right) \\
& =\left(\alpha a_{1} \hat{\mathbf{x}}+\alpha a_{1} \hat{\mathbf{y}}+\alpha a_{1} \hat{\mathbf{z}}\right)+\left(\beta a_{1} \hat{\mathbf{x}}+\beta a_{1} \hat{\mathbf{y}}+\beta a_{1} \hat{\mathbf{z}}\right) \\
& =\left(\alpha a_{1}+\beta a_{1}\right) \hat{\mathbf{x}}+\left(\alpha a_{1}+\beta a_{1}\right) \hat{\mathbf{y}}+\left(\alpha a_{1}+\beta a_{1}\right) \hat{\mathbf{z}}
\end{aligned}
$$

Because of the distributive property, $(\alpha+\beta) \mathbf{x}=\alpha \mathbf{x}+\beta \mathbf{x}$. Property M4 is satisfied.
Property M5
Multiply 1 and \mathbf{x}.

$$
\begin{aligned}
1 \mathbf{x} & =1\left(a_{1} \hat{\mathbf{x}}+a_{1} \hat{\mathbf{y}}+a_{1} \hat{\mathbf{z}}\right) \\
& =a_{1} \hat{\mathbf{x}}+a_{1} \hat{\mathbf{y}}+a_{1} \hat{\mathbf{z}} \\
& =\mathbf{x}
\end{aligned}
$$

Property M5 is satisfied. All ten properties are satisfied, so the set of vectors with three equal components is a vector space over the complex numbers. The dimension of the vector space is 1 because each of the vectors is spanned by the one basis vector $(1,1,1)$.

